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1    Project Introduction 

For the past few years, the Department of Defense has been transforming its culture to be based 
on information sharing. Organizations within the DoD recognize that this change leads to greater 
effectiveness. For example, the doctrine of network-centric operations emphasizes shared situa- 
tional awareness for warfighters to enable collaboration and self-synchronization, and to enhance 
sustainability and speed of command [19]. Combatant Commands use Common Operating Pic- 
tures (COPs) that integrate data from a variety of sources, geospatially locating them on a single 
map. After 9/11, the restructuring of the Intelligence Community (IC) seeks to remove the barriers 
to joint intelligence work. From the 9/11 Commission Report [53]: 

The importance of integrated, all-source analysis cannot be overstated. Without 
it, it is not possible to "connect the dots." No one component holds all the relevant 
information. 

However, information sharing is at odds with information security. The primary mechanism 
that the DoD uses to ensure the secrecy of sensitive information is physical isolation. The NIPRNet 
(Unclassified but Sensitive Internet Protocol Router Network), SIPRNet (Secret Internet Protocol 
Router Network) and JWICS (Joint Worldwide Intelligence Communications System) networks 
compartmentalize unclassified, secret and top secret data. Such airgapping mitigates the potential 
damage of successful attacks, but it also comes with a cost to effectiveness that is recognized by 
members of the DoD. When asked to suggest problems for the Computer Science Study Group to 
consider, the last item on the list that Mr. Richard Corson (USSOCOM JOC Chief) circulated read: 

Cross Domain Capability: Good NSA approved cross domain capability to allow 
working between UNCLAS, SECRET, and TOP SECRET networks. J 

During CSSP visits, similar organizations also expressed dissatisfaction with the existing compart- 
mentalization strategy, citing issues such as the cost of multiple wires and machines, the complex- 
ity of approved information transfers (such as with USB storage devices), the number of different 
security levels present when conducting coalition warfare, and the inability to run analysis tools 
at multiple security levels. As a result, organizations such as USSOCOM, the NSA, and the DIA 
are actively seeking alternative methods of Information Assurance (IA). 

Although any solution to this secure data integration problem will require the synthesis of 
techniques from the networking, cryptography, and operating systems domains, one crucial com- 
ponent is the security of the user applications themselves. The software should permit authorized 
users to manipulate and process confidential data from multiple domains, yet it must not allow 
accidental or malicious violation of the end-to-end security policies in force. Establishing the se- 
curity of application software is critical because existing OS-level access-control policies are too 
coarse grained to account for important information flows, such as how parts of a document are 
manipulated via user edits or transmitted over the network. Moreover, to warrant the NSA's ap- 
proval, such software must be certified to ensure that it does not contain Trojan horses, covert 
channels, or other unauthorized code. 

Under current best practices, the detailed software auditing needed to both rule out malicious 
code and verify that the software follows the appropriate security policies is extremely time con- 
suming and expensive. Recent advances in programming language research suggests a better 
path: develop abstractions that allow programmers to directly express security concerns in the 

'Richard Corson, "CS2G Projects for the USSOCOM JOC", 23 Aug 2006 



program itself. Such security-oriented languages, described in more detail below, make it easier and 
cheaper to develop software that satisfies strong security policies. Of course, to know whether a 
program written using a security-oriented language meets its IA requirements, it is necessary to 
understand what properties the programming language itself provides. This so-called metatheory 
problem—the problem of rigorously establishing the properties of a security-oriented program- 
ming language—is the main research thrust of this project. 

The novel contributions of the project include: 

• Basic research that extends the current capabilities of using machine-checked proofs for ver- 
ifying security properties and metatheory of complex, security-oriented languages. 

• The development of a suite of tools and associated methodologies that demonstrate how to 
apply the basic research, implemented in the context of the Coq proof assistant. 

• Machine-checked proofs of type safety and noninterference, two critical security properties, for 
a test-bed programming language called AURA, a security-oriented language that will target 
the Microsoft .NET framework. 

Outline The rest of this final report is laid out as follows: The next section describes security- 
oriented languages in more detail and explains why establishing their metatheoretic properties is a 
critical component in implementing cross-domain secure systems. Along the way, Section 2 also 
describes the need for machine-checked metatheory for security-oriented languages. Section 3 
provides background for AURA, the specific programming language that is the test-bed for this 
research. The next three sections lay out results of the project: detailing the specific methodol- 
ogy undertaken for the AURA test-bed (Section 4), the design of additional tools that aid in the 
metatheory of programming languages (Section 5), and the evaluation of our tools and method- 
ology that we performed to ensure that our efforts will apply beyond the verification of the AURA 
language (Section 6). 

2    Security-oriented languages: background and motivation 

As observed above, manual auditing of software to determine whether it is secure enough for 
use in mission-critical and cross-domain contexts is expensive and time consuming. Software 
verification, once thought to be a panacea for such problems, has not panned out in practice, 
largely because verifying even relatively small programs takes extraordinary skill and a huge 
amount of effort. Such an approach is neither cost effective nor scalable. 

The story is not entirely bleak, however. Advances in programming language design have 
created remarkably effective tools that can rule out large classes of software safety problems. For 
example, modern programming languages like Java and C#, if properly implemented, prevent 
buffer overflows and a host of similar memory errors that plague C and C++ software. 

In practice, the only scalable way to verify properties of large or numerous programs is to pro- 
vide support during the application development process. The key idea from the programming 
languages research domain is the use of static type systems that enable the compiler to perform 
light-weight verification of fundamental safety properties. The win compared to traditional soft- 
ware verification is clear: rather than meticulously verifying each program individually, a type 
system guarantees properties about all programs accepted by the compiler of a safe language; fur- 
thermore the analysis can be mostly automated, permitting it to scale to large software. There 
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Figure 1: Architecture of a system built using a security-oriented language. On the left are the main 
hardware and software artifacts that go into the development and deployment of a networked information 
system. On the right are three key requirements for establishing the security of the system; the correctness 
of the policy is a fourth criterion. This proposal's primary research thrust is machine-checked metatheory: 
using computer-assisted proof development to validate the components in the dotted box. 

is still an obligation to verify that the language's type system ensures the property of interest— 
that is, to establish the language's metatheory—but this task can be undertaken once and for all by 
the expert programming language designers and implementors. Ordinary programmers get the 
safety benefits, without having to prove their programs correct by hand. 

The advent of the Internet and the rise of security concerns have spawned a vibrant research 
community focused on security-oriented programming languages [56,1,38,44,6,52,21], of which per- 
haps the best known is Jif, developed by Myers et al. at Cornell [39]. Security-oriented languages 
aim to achieve the scalability benefits of type systems for security properties beyond traditional 
memory safety. Rooted in the pioneering work by Denning in the 1970s [16, 17], the goal is to 
provide strong enforcement of information-flow and access-control policies, language support for 
authorization, authentication and audit operations, and seamless integration with cryptography2. 
Together, these features combine to provide a software-development platform that should sig- 
nificantly ease the burden of building certifiably secure programs suitable for cross-domain and 
mission critical applications. The need for such language-based security has been articulated both 
by studies commissioned by the U.S. Government [47] and by leaders in the academic commu- 
nity [48]. 

Figure 1 shows the key components of a system built using a security-oriented programming 
language. As indicated at the top left of the figure, the programmer writes the software using 
familiar datatypes and algorithms, but in addition to these usual abstractions, the language itself 
provides mechanisms for describing confidentiality and integrity policies, authorization require- 
ments, access control policies, and the like. Importantly, this design allows the information as- 
surance policies to be expressed in terms of concepts that make sense for the application at hand 
(such as 'document' or 'e-mail') , rather than the abstractions (such as 'file' or 'machine word') 

2For an overview of just some of the work in this area, see Sabelfeld and Myers survey [46] 



provided by the operating system. 
Given the policy information and the program, the language implementation can verify, by 

type checking, that the program meets the requirements of the policy—if the program does not 
meet the requirements, it is rejected as "bad" and not accepted. For security-oriented languages 
that enforce information-flow policies, there are two most relevant properties. The first is type 
safety, which demonstrates that the language's abstractions are not violated (ruling out many 
safety errors) and provides a solid foundation on which to build higher-level security properties. 
The second is noninterference [22], which ensures that the only information flows through the pro- 
gram are permitted by policy, thereby ensuring that confidential information is not inadvertently 
(or maliciously) leaked to publicly accessible parts of the system. 

Correctness of the secure system Returning to Figure 1, there are two more pieces of the dia- 
gram that play a role in the security of the system. First, the language compiler, in addition to 
producing bytecode or machine instructions that can be directly executed, is also responsible for 
ensuring that the security policy is respected by the resulting executable code. Second, when the 
program is run it will typically rely on features (such as process isolation) and services (such as 
cryptography, the file system, or network access) provided by the underlying operating system 
and hardware. 

The security of the system therefore depends on at the correctness of at least four things 
marked in the Figure: (1) the properties guaranteed by the type system, namely that the pro- 
gram meets its policy, (2) the program transformations and optimizations done by the compiler, 
(3) the network protocols, cryptography, etc. implemented in the hardware and OS, and, (4) the 
security policy itself. Not surprisingly, because finding solutions for each of these correctness 
problems is vital to creating secure software systems, all four have received considerable attention 
from academia, the government, and industry. 

Until recently, the best practice for establishing these correctness criteria was painstaking man- 
ual audit, code reviews, and pencil and paper proofs checked by experts. Now the trend is to use 
computer-aided verification techniques such as model checking, theorem provers, and mecha- 
nized proof assistants, which enable rigorous auditing to scale to larger, more complex systems 
than possible by hand. To achieve the high-confidence standards required for the cross-domain 
and network-centric information applications envisioned by agencies in the DoD, it will be neces- 
sary to apply such computer aided verification techniques to the four criteria mentioned above. 

To date, there has been significant progress made in using these tools to address the correct- 
ness criteria outlined above. A number of projects address the problem of compiler correctness 
(criterion (2)), including: Leroy's machine-checked compiler back end for C [35]; Appel et al.'s 
Foundational Proof Carrying Code project [37, 3, 2], and Crary's formalization of Foundarional 
Typed Assembly Language (TALT) [15]. With respect to trusted run-time systems (criterion (3)) 
there have also been a variety of relevant projects: Sewell et al.'s machine-checked specification of 
the TCP/IP protocol stack [11], Shi's [50] and Zhou et al.'s [57] work on verified device drivers, 
and the Microsoft Singularity operating system [26] among others. There are also a variety of 
tools for policy analysis, mostly aimed at determining consistency properties for access-control 
(criterion (4)) [24,18,9, 36]. 

For criterion (1), however, there has been relatively little work: Klein and Nipkow have a 
machine-checked model of a Java-like language [33] and Harper et al. have verified the type sys- 
tem of Standard ML of New Jersey [34]. Both of these projects address only type safety—the pro- 
gramming languages they consider aren't security-oriented and therefore lack support for strong 
information-flow or access control security policies. To our knowledge there are few instances of 



machine-checked metatheory for security-oriented languages. Most were undertaken for small, 
toy programming languages: David Naumann verified a secure information flow analyzer for a 
fragment of the Java language [40], and Jacobs, Pieters and Warnier [27] showed noninterference 
for a simple imperative language in the PVS theorem prover. Also, Strecker showed noninter- 
ference for Microjava in Isabelle/HOL [51]. Barthe et al's work on a secure variant of Java byte- 
code [8] is the most comprehensive, but is aimed at bytecode, not source-level security properties. 

2.1   The missing piece: Mechanized metatheory for security-oriented languages 

The primary goal of this project was to address criterion (1) head-on: We propose to conduct basic 
research about how to produce machine-checked proofs of the metatheory for security-oriented languages. 

This is a worthwhile and significant task for several reasons. As we have seen, the security 
of programs written in a security-oriented language depends crucially on the correctness of its 
metatheory. Just as an unsound type system may create an opportunity for an attacker to exploit 
a buffer overflow, any flaw in the noninterference analysis of a security-oriented language might 
permit an application to leak sensitive information. This problem is particularly alarming in the 
cross-domain network operations setting that is the primary interest of the organizations within 
the DoD. 

This task is also substantial and challenging. Security-oriented languages are complex arti- 
facts. They offer a strong safety net to application programmers, but the security properties such 
as safety and noninterference are difficult for the implementors to establish rigorously. Unfor- 
tunately, rigorous proofs even about simpler programming languages are difficult for humans 
to manage: they are long and tedious, with just a few interesting cases sprinkled among boring 
ones (which must nevertheless be checked carefully to confirm that they really are boring!). The 
difficulty of these proofs arises from the management of many details rather than from deep con- 
ceptual difficulties (these arise earlier, in the process of getting the definitions right); yet small 
mistakes or overlooked cases can invalidate large amounts of work. These effects are naturally 
amplified as languages scale.3 

Automated proof assistants offer the hope of significantly easing these problems. However, 
despite encouraging progress in this area in recent years and the availability of several mature 
tools (including Coq [10], Isabelle [41], ACL2 [32], and Twelf [43]), the application of these tools to 
programming language problems is not commonplace. 

Concretely, we will address these issues: 

• Security-property specific techniques: Security-oriented languages require domain-specific 
proof techniques to establish type safety and noninterference (the fundamental property for 
information-flow assurance). Our hypothesis is that addressing this problem will require a 
non-standard operational semantics and additional library support. 

• Proof overhead and management: Managing the details of large, complex proofs is quite 
difficult. Furthermore, those proofs must be robust with respect to the changes of an evolv- 

3A typical example of the current state of affairs of programming language metatheory can be found in a recent 
conference paper by Chen and Tarditi [13] on a new typed intermediate language for compiling object-oriented source 
languages such as C#. The safety theorem for this language is stated in a standard form ("execution of a well-typed 
program cannot get the abstract machine into an erroneous state"), and the proof of this fact is regarded by the authors 
as too boring even to sketch in detail: the paper just says "By standard induction over the typing rules." However, the 
details of this "standard" proof, in the accompanying technical report, run to 26 dense pages! What, realistically, are the 
odds that anyone besides the authors has checked it carefully? Another point worth noting is that the paper's second 
author is one of the lead compiler developers at Microsoft: this is not just an academic exercise! 



ing language design. We have some experience solving this problem for specific tasks (such 
as how to handle variable binding [4]), but we need more automation. 

• Generality: Our efforts will have more impact if our results are general and applicable to the 
specifications of other security-oriented languages. To ensure the robustness of our method- 
ology, we will encapsulate the reusable parts of our infrastructure into libraries, use those to 
formalize a middleweight version of Jif, and analyze our own design evolution. 

In addition to the basic research needed to address these challenges, the output of this project 
will be twofold: First, we plan to mechanize the metatheory of a test-bed security-oriented lan- 
guage called AURA that will serve as a specific test case of the problems mentioned above. The de- 
velopment of the AURA language itself is of independent merit, since it represents a cutting-edge 
security-typed language. Second we will develop new tools and processes so that the metatheory 
of similar languages may also be more easily mechanically verified, thereby making our results 
accessible to other researchers and practitioners in the field. 

Before explaining our approach to solving these challenges and our expected contributions in 
more detail, it is first necessary to describe AURA, the security-oriented language that will serve 
as the testing ground for our tools and techniques. 

3    AURA: a security-oriented language test bed 

AURA is a new security-oriented language developed at the University of Pennsylvania. AURA'S 

programming model smoothly integrates information-flow and access control constraints with 
the cryptographic enforcement mechanisms necessary in a distributed computing environment, 
making it ideal for the kinds of cross-domain applications wanted by organizations within the 
DoD. The design of the AURA language is summarized in the paper "AURA: A Programming 
Language for Authorization and Audit", presented at the International Conference on Functional 
Programming, September 2008 [28] and extended in Jeffrey Vaughan's dissertation [54], and the 
paper ""Encoding Information Flow in AURA" [29]. 

The key innovation in the AURA project is the pervasive use of policy-justified data, a technique 
that simultaneously generalizes both traditional multi-level security (MLS) labels [16, 20, 22, 46] 
and capability-based trust-management mechanisms [12, 31]. Like MLS, policy-justified data as- 
sociates security-policy-specific metadata with each data value in the system and propagates them 
together to account for information flows. As in capability-based trust-management systems, 
confidentiality and integrity policies for information-flow, access-control, and downgrading are 
expressed using a rich policy logic that can be implemented using standard cryptographic tech- 
niques (e.g., digital signatures). Unlike either of these techniques in isolation, however, their com- 
bination in AURA provides remarkable synergy: Incorporating trust-management-style authoriza- 
tion logics into the programming language allows the AURA compiler to ensure that programs do 
appropriate access-control checks and logging, while using an authorization logic to describe the 
security-levels of data in the system permits flexible, decentralized, and dynamic enforcement of 
information-flow policies. 

AURA provides following features: 

• A decentralized authorization logic that enables software developers and system adminis- 
trators to uniformly and declaratively specify access-control and information-flow policies, 
including those that include downgrading (declassification and endorsement). The policies 
are intended to support both confidentiality and integrity policies. 



• Support for authentication using a first class notion of principal that gives the policy language 
a natural interpretation using public-key infrastructure (PKI). 

• Support for policy-justified data that connects the data being manipulated by the program 
with run-time capabilities that carry both MLS policy and audit information. 

• Language support for auditing that ensures that appropriate log entries are generated when- 
ever a security-relevant operation is performed by the system. This audit trail includes the 
evidence that justifies the action, not just a record of the action itself. 

One important facet of the AURA language is that it requires system programmers to gener- 
ate informative logs that explain why the information being processed has been released to vari- 
ous constituents—logging is mandatory, not discretionary. This mandatory audit-trail is crucial for 
helping find flaws both in the software components and in the policy components. 

The AURA project implementation consists of a compiler and language run-time system that 
provide appropriate compliance checking of authorization certificates, suitable cryptographic al- 
gorithms, and efficient means of logging and manipulating the policy metadata. AURA is im- 
plemented using Microsoft's .NET framework (specifically, the compiler will be written in the F# 
language). Furthermore, the AURA compiler targets the .NET framework. This strategy provides 
two important benefits: First, the .NET platform offers a path to interoperability with a wide array 
of existing code and libraries. Second, the .NET framework provides existing support that sim- 
plifies the implementation of compilers—our AURA compiler can take advantage of work already 
done by the Microsoft developers. 

One could implement a secure system in any programming language, but using a security- 
oriented language like AURA provides a number of significant advantages: The compiler can 
statically detect (via type checking) many illegal information flows through the application code, 
thus yielding a high-degree of confidence in the security of the application itself. AURA can also 
ensure that the program adheres to the specified access-control policy in force and, assuming that 
the library interfaces have been implemented correctly (i.e., they are part of the trusted computing 
base), AURA can ensure the appropriate logging of all information needed to justify the applica- 
tion's behavior. 

The AURA language implementation is available for download from http: //www. cis. upenn. 
edu/~"stevez/sol/aura.html. 

4    Mechanizing the Metatheory of AURA 

To explain the correctness of AURA'S policy enforcement mechanisms, it is necessary to give a 
coherent theoretical account of the combination of the features mentioned above. Beyond estab- 
lishing that the programs verified by AURA'S type checker meet their intended security policies, 
such theoretical foundations are necessary to justify various optimizations for compressing audit 
log information. The theoretical foundations are also crucial for building tools that help adminis- 
trators understand the impact of changes to a system's authorization policy. 

Therefore, a concrete output of this project is the mechanically certified proofs of the metathe- 
oretic properties of the AURA programming language. By verifying the security properties of its 
type system, we obtain a corresponding theorem about every type-correct AURA program "for 
free." This represents a significant savings over approaches based on verifying the security prop- 
erties of programs written in languages that provide no such guarantees. 



Our research will focus on mechanically verifying that the following important properties hold 
for all type-correct AURA programs: 

Type safety states that such programs do not "get stuck"—i.e., that linguistic abstractions are 
not violated: memory references access only well-defined, in-scope objects and control-flow 
only transfers to approved locations. Type safety provides a base level of system security, 
for example eliminating attacks based on buffer-overruns, pointer forging, stack smashing, 
etc. 

Noninterference states that such programs regulate the flow of information by their security poli- 
cies. Public values and outputs are unaffected by sensitive data, except by carefully anno- 
tated declassification points. Noninterference is the cornerstone of language-based informa- 
tion assurance. 

To reduce complexity, AURA is specified by an elaboration semantics [25]. This process defines 
AURA in terms of a simpler internal language, called Core-AURA. The translation between these 
two languages is called elaboration. The elaboration process eliminates shallow syntactic differ- 
ences between similar constructs and shrinks the number of features in the core, effectively mod- 
ularizing the overall semantics. Elaboration also includes analysis and type inference, allowing 
programmers to elide type and security annotations that may be deduced from context. 

The external AURA language makes life easier for programmers, because they have a large 
grammar of pithy linguistic constructs to draw from, and because they must spend less time writ- 
ing "obvious" facts about their programs. On the other hand, the overall size of AURA and the 
elision of these annotations makes it harder to reason about than Core-AURA. It is much simpler 
to prove properties such as type safety and noninterference for Core-AURA than for AURA. 

By formalizing the property of elaboration soundness, which states that programs that type check 
in AURA also type check in Core-AURA, we can lift properties shown for the core language where 
their proofs are tractable, to the source language, where programming is convenient. Therefore 
we can divide the metatheoretic task of AURA into three pieces: showing type safety and nonin- 
terference for Core-AURA, and showing elaboration soundness. 

We used the Coq proof assistant [10] for this task. The Coq tool has already demonstrated 
its usefulness for formalized metatheoretic reasoning [35, 8, 14, 4]. Coq is not a theorem prover; 
the normal mode of operation is to check proofs expressed in its logic, the Calculus of Inductive 
Constructions. To facilitate proof creation, Coq supports interactive proof development through 
an extensible scripting language. The Coq proofs of type soundness and elaboration soundness 
for AURA are available from http://www.cis.upenn.edu/~stevez/sol/aura.html. 

4.1   Noninterference 

In the paper "Encoding Information Flow in AURA" [29] we used ideas inspired by a Haskell 
library for light-weight information-flow security [45] to encode information-flow types in AURA. 
Our advantage over the Haskell approach is that we can use constructs for AURA s authorization 
logic for the encoding. The main idea of our encoding is that we use principals to represent 
security labels, and the type for a secret of type t protected at level H can be encoded as (x : 
pf H says Reveal) —* t. Intuitively, without Hs private key, no one can create an assertion of the 
type H says Reveal and therefore secrets protected at level H can not flow to public channels. 
The noninterference theorem of such encoding depends upon the noninterference properties of 
the authorization logic. Furthermore, expressive access-control policies specified in authorization 
logic can be used to specify the policies for declassification. 

8 



This work makes the following contributions: 

• We show how to encode information-flow types using authorization logics based on prior 
work [55, 28]. 

• We prove the basic noninterference theorem of our encoding. The key components of the 
proof are mechanized in the proof assistant Coq. 

• We investigate through examples how declassification can be governed by access-control 
policies. 

4.2    Confidentiality Extension 

Jeffrey Vaughan extended AURA with support for creating, manipulating and accessing confiden- 
tial data [54]. In the AURAconf extension, confidential data and computations are given special 
types and are automatically encrypted as needed. For example, the type int for Alice represents 
an integer readable only by principal Alice. In this system, any user can build secret computa- 
tions for any other. To unprivileged users, confidential data values and computations are opaque. 
Values with for-types are encrypted, providing security against adversaries that are outside the 
system and able to, for example, intercept network traffic. 

AuRAconf integrates a novel mix of conventional and new ideas to provide intuitive confi- 
dentiality operators. The language contains ciphertexts as first-class values. To enable precise, 
typed-based analysis of these entities, the typechecker can access statically available private keys 
and examine ciphertexts at compile time. When an appropriate key cannot be found, facts about 
particular ciphertexts may be used by the type-checker. 

In addition to syntactic soundness, AURAconf satisfies a noninterference property that gives 
one precise, but narrow, characterization of the languages security benefits. Vaughan's work on 
the AURAconf metatheory included a mechanized proofs of both of these properties. These proofs 
were based on the mechanical proofs of the same properties of Core-AURA, demonstrating that 
such proofs are amenable to reuse and extension. 

5    Eliminating Boilerplate 

The most promising way to prove metatheoretic results such as type soundness and noninterference 
for realistic programming languages is to do so with mechanical assistance. In particular, Barthe 
et al. report about their experience showing noninterference results for the Java Virtual Machine 
(JVM) language [7]: 

[W]e have machine-checked our results in the proof assistant Coq in order to gain 
increased insurance in the soundness proof. Indeed, we feel it is important to resort 
to proof assistants for managing the complexity of the definitions and proofs involved 
in establishing noninterference, in particular because the definition of the type system 
is intricate and the soundness proof involves some lengthy and error-prone proofs by 
case analysis, as well as some unusual induction principle on the execution of pro- 
grams. 

However, little has been written about the engineering principles that permit such reasoning. 
Few researchers describe exactly how the proof assistant provides the necessary automation for 



metavar expvar, x, y, z ::= {{ repr-locally-nameless }} 
grammar 
exp, e, f, g ::  : : = 

I x     :: :: var 

I el e2   :: :: app 

I \ x . e  :: :: abs 
(+ bind x in e +) 

substitutions 

single ex:: subst 
freevars 
ex : : f v 

Figure 2: LNgen input file 

managing the complexity and sheer size of proofs. Furthermore, our situation differs from previ- 
ous work in mechanical metatheory verification. Barthe et al. started with an existing language. 
Here, we would like to make mechanical verification a significant part of the language design 
process. 

This co-evolution has its trade-offs. The advantage of formalizing a new language is that we 
are free to inform the specification of the language based on our experiences with the metatheoretic 
reasoning. Importantly, it ensures that we are basing our design on sound reasoning principles, 
and do not commit to inherently untenable design choices. 

Furthermore, the fact that verification is part of the design process means that we may define 
the semantics of the language in such a way so that our proofs are shorter, simpler, and more 
modular. For example, binding constructs are notoriously difficult to reason about formally—by 
representing all binding constructs with a single form we can localize that reasoning to one part 
of the language. 

The disadvantage to this process is that as the language grows and evolves, so must its mech- 
anized proof. Therefore, we must pay close attention to the structure of our metatheory so that 
they do not hinder language evolution. Ideally, we would like the structure to be agile and robust: 
tweaking the design of the language should result in a manageable amount of change to existing 
proof text. 

5.1    The LNgen tool 

To assist with the mechanical formalization of programming language, we developed the LNgen 
tool. This tool specifically addresses the boilerplate from our methodology for reasoning about 
programming language metatheory [4]. While we have libraries that factor out reasoning common 
to all languages, the particular manner in which we represent syntax leads to a proliferation of 
language-specific lemmas about low-level operations. Their statements and proofs follow directly 
from the syntax of the language and thus are uninteresting artifacts of our methodology. 

The paper "LNgen: Tool Support for Locally Nameless Representations" [5] describes our 
tool in detail. LNgen uses the same input language as Ott [49], a tool for translating language 
specifications written in an intuitive syntax into output for LATEX and proof assistants. While Ott 
generates locally nameless definitionsdatatypes for syntax and relations, functions to calculate free 
variables and substitutionsfrom the specification, LNgen provides recursion schemes for defining 
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1. fv-open-upper: fv (open e\ e?) C fv t\ U fv t2 

2. fv-open-lower: fv ei C fv (open e\ e2) 

3. fv-close: fv (close x e) = fv e x 

4. fv-subst-upper: fv (subst e\ x ev) C fv e\ U (fv e2 x) 

5. fv-subst-lower:(fv e2 x) C fv (subst c,\ x 02) 

6. fv-subst-fresh: fv (subst e\ x e2) — fv e2 when x ^ fv e2 

7. subst-fresh-eq: subst e\ x e2 = e2 when x $ fv e2 

8. subst-subst:   subst eix(subst e.2 y e)   =  subst (subst ei x e<i) y (subst ei x e)   when?/  $ 
fv ei and y ± x 

9. subst-open-var: subst e\ x (open (var_fy)e2) = open (var.f y)(subst t\ x e2) when x ^= 
y and Ic ei 

10. subst-abs: subst ej x (abs e2) = abs (close ^(subst eix(open (var_f 2)62))) when z $ fv e\ U 
fv e2 U x and Ic ei 

11. subst-close: subst ei.r(close ye.2) = close )y(subst eixc2) when x ^ y and y £ fv ej and Ic ej 

12. subst-intro: open eie2 = subst eix(open (var_fx)e2) when x ^ fv e2 

13. open-close: open (var_f x)(close x e) = e 

14. close-open: close x(open (var_f x)e) = e when x ^ fv e 

15. open-inj: open (var.f x)e,\ = open (var_f x)e2 implies e.\ = e.2 when x ^ fv e.x U fv e.2 

16. close-inj: close x e\ = close x e2 implies e\ = e2 

17. lc-unique: If (Ic p\ : Ic e) and (Ic P2 : Ic e), then Ic p\ = Ic P2 

Figure 3: Sample lemmas produced by LNgen 

functions over syntax and a large collection of infrastructure lemmas. LNgen automates much of 
the tedium associated with the locally nameless style, even in our streamlined style, by allowing 
users to focus on the more interesting aspects of their developments instead of on infrastructure 
lemmas. In the next section, we describe in additional detail the input to and output from LNgen, 
highlighting the important properties that are automatically proved. 

LNgen is available and has been used for significant developments.4 LNgen relies on Ott to 
generate the core locally nameless definitions for a language. It then generates additional defini- 
tions and lemmas that are often needed in developmentsthe main benefit that it provides to users 
over using Ott alone. 

The input language for LNgen is a proper subset of the Ott specification language. Figure 2 
shows an example input file for untyped lambda terms. The syntax is intended to mimic what 

'LNgen is available from http://www.cis.upenn.edu/ sweirich/papers/lngen/ 
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one might write informally. Ott is specifically designed for specifying programming languages 
in a manner that is both convenient for people and machines, e.g., proof assistants. Thus, Ott 
is a natural starting point for the input language to LNgen. We can take advantage of the work 
that has gone into the design of Ott, not require users to learn a new specification language, and 
allow our tool to work in parallel with Ott, relying on Ott for the generation of some of the Coq 
definitions as well as LATEX output. 

Below, we use the example to give a brief overview of the subset of Ott that LNgen supports; 
a detailed description of the Ott language can be found elsewhere. The first part of an input 
file for LNgen consists of a list of metavar declarations. Each declaration defines a new type 
for object language variables LNgen and Ott define binding and substitution for these variables. 
In Fig. 2, the text repr-locally-nameless indicates that binding should be represented us- ing a 
locally nameless encoding. (Ott can also output definitions using a concrete representation of 
binding.) The second part, the grammar, consists of a list of context-free grammar definitions 
for nonterminals. Each declaration defines a new, inductively defined type for object-language 
abstract syntax trees. Binding specifications may be attached to each constructor. For example in 
the abs constructor, the metavariable x is a binding occurrence in the nonterminal e. The third part 
follows the substitutions keyword and indicates that functions for substituting for free variables 
should be generated. The final part follows the f reevars keyword and indicates that functions 
for calculating free variables should be generated. Anything else in the file is ignored by LNgen 
but may be processed by Ott, e.g., specifications of inductively defined relations. 

The main benefit to using LNgen is that it automatically generates a collection of lemmas (with 
their proofs) about expressions that are useful in metatheoretic reasoning. We highlight the most 
important of these in Figure 3. The collection shown includes all of the lemmas that we discussed 
in our previous work. For convenience, LNgen also generates several variants of the lemmas 
shown and others besides. Our goal in picking the set of lemmas to generate was not to determine 
some minimal "complete" set for working with metatheory but to generate a set that, from our 
experience, we know to be useful in formalizations. 

LNgen is able to automatically generate the proofs of each of the lemmas in Fig. 3 because, in 
general, they are "boring" infrastructure lemmas whose proofs are straightforward inductions. At 
any given point in a proof, there is little choice about what step to take next. Thus, most of the 
proof scripts start by applying an induction tactic and then use a power tactic to apply a default set 
of simplifications to the resulting subgoals. In cases where this is not sufficient, LNgen generates 
more complex scripts based on our knowledge of how such proofs normally proceed. There is 
no worry about the soundness of our reasoning: the scripts generated by LNgen must be run by 
Coq to generate proof terms that are then checked. We favor generating proof scripts over proof 
terms because it keeps the implementation of LNgen simple. Proof terms are specific to individual 
lemmas and vary from language to language. By contrast, our tacticswhich are useful in their own 
rightapply to multiple lemmas and do not need to vary from language to language. Unfortunately, 
because Coqs tactic language is incompletely specified, it is impossible for us to guarantee that our 
scripts will always succeed. These scripts have never failed on any of our case studies. However, 
if some proof should fail, the effect is localized. The user may have to do that proof by hand (if 
they would like to use that lemma) but other generated definitions, lemmas, and proofs will still 
be available. 
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Language OTT LOC LNgen LOC Hand LOC 
Core-AURA - - 12400 
STLC 134 1533 108 
Contracts [23] 438 3695 3854 
Dependent Types [30] 991 7638 12963 
Generative Type Abstraction [42] 1544 26197 - 

Table 1: Lines of Code Comparison 

6    Tool evaluation 

To evaluate the genericity of our infrastructure (including LNgen), we used it as part of the three 
new projects that we were simultaneously working on. These projects are each for general pur- 
pose, strongly-typed languages, but their designs have many similarities to AURA. Therefore, we 
are confident that the lessons that we learned from them will apply to the design of new security- 
typed languages. 

In performing these experiments, we were particularly interested in the following questions: 
Do generated definitions accurately reflect the language specified by the user? Are lemmas, both 
those found in our libraries and those that are generated by the tool, useful in practice? Do gen- 
erated proofs pass Coqs proof checker without modification? In all cases, we found the tool to be 
correct and useful for our purposes. The representations were accurate, the lemmas important, 
and we never had any trouble with the output of LNgen. 

Table 1 summarize these efforts, listing the lines of code in the specification of the language, 
the lines of code output by LNgen, and the lines of code written by hand that used the LNgen 
output. For comparison, we also include the line count from core-AURA, as well as for a small 
example, the simply-typed lambda calculus (STLC). 

Dependent types and program equivalence The definition of type equivalence is one of the 
most important design issues for any typed language. In dependently-typed languages, because 
terms appear in types, this definition must rely on a definition of term equivalence. In that case, 
decidability of type checking requires decidability for the term equivalence relation. 

Almost all dependently-typed languages require this relation to be decidable. Some, such as 
Coq, Epigram or Agda, do so by employing analyses to force all programs to terminate. Con- 
versely, others, such as DML, ATS, Omega, or Haskell, allow nonterminating computation, but 
do not allow those terms to appear in types. Instead, they identify a terminating index language 
and use singleton types to connect indices to computation. In both cases, decidable type checking 
comes at a cost, in terms of complexity and expressiveness. 

Conversely, the benefits to be gained by decidable type checking are modest. Termination 
analyses allow dependently typed programs to verify total correctness properties. However, de- 
cidable type checking is not a prerequisite for type safety. Furthermore, decidability does not 
imply tractability. A decidable approximation of program equivalence may not be useful in prac- 
tice. 

The paper "Dependent types and Program Equivalence" [30], takes a different approach: in- 
stead of a fixed notion for term equi valence, we parameterize our type system with an abstract 
relation that is not n necessarily decidable. We then design a novel set of typing rules that require 
only weak properties of this abstract relation in the proof of the preservation and progress lem- 
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mas. This design provides flexibility: we compare valid instantiations of term equivalence which 
range from beta-equivalence, to contextual equivalence, to some exotic equivalences. 

Because the goal of this work was to make the exact properties of program equivalence that are 
required for type soundness precise, it made sense to formalize this work using the Coq proof as- 
sistent. This project was an excellent case study for LNgen: the specification of the entire language 
fell within the capabilities of the LNgen tool. Therefore, we used Ott to specify the language and 
LNgen to generate its output. Once this was set up, it took less than two weeks to state and prove 
the desired properties of the language—the experience of AURA as well as the availability of the 
LNgen tool meant that the task of producing a machine-checked version of the programming lan- 
guage metatheory was not a significant cost to the project. Furthermore, confidence in our results 
was significantly increased due to the presence of these proofs. LNgen was an important part 
of the project—without the availability of LNgen, we would not have been able to complete the 
proofs before the conference deadline. Because the tool provided every infrastructure lemma we 
needed, we were able to focus their efforts on the novel aspects of their languages design. 

Contracts made Manifest Higher-order contracts, introduced by Findler and Felleisen, are a 
language construct that extend dynamic contract checking to languages with first-class functions. 
Since their introduction, many variants have been proposed. Broadly, these fall into two groups: 
some follow Findler and Felleisen in using latent contracts, purely dynamic checks that are trans- 
parent to the type system; others use manifest contracts, where refinement types record the most 
recent check that has been applied to each value. These two approaches are commonly assumed to 
be equivalent-different ways of implementing the same idea, one retaining a simple type system, 
and the other providing more static information. 

The paper "Contracts Made Manifest" [23] extends the work of Gronski and Flanagan, who 
defined a latent calculus Ac and a manifest calculus A/,, gave a translation cp from Ac to A^, and 
proved that, if a Ac term reduces to a constant, then so does its </> image. We enrich their account 
with a translation i/> from Xh to Ac and prove an analogous theorem. The paper then generalizes the 
whole framework to dependent contracts, whose predicates can mention free variables. This ex- 
tension is both pragmatically crucial, supporting a much more interesting range of contracts, and 
theoretically challenging. We define dependent versions of A^ and two dialects (lax and picky) 
of Ac, establish type soundness—a substantial result in itself, for A^—and extend <p and ip accord- 
ingly. Surprisingly, the intuition that the latent and manifest systems are equivalent now breaks 
down: the extended translations preserve behavior in one direction but, in the other, sometimes 
yield terms that blame more. 

In the process of this work, we found that there was one part that was particularly well-suited 
to formalization. Most of the work went beyond the capabilities of tools like LNgen (requiring 
type-directed translations and the definitions of logical relations). However, one particular thorny 
part of the work relied on properties of reduction of the term language. This part was intricate, 
but not very enlightening to the project as a whole. The sixty page technical report that accom- 
panies this paper and provides (paper) proofs of the theorems, included this part as an appendix. 
Therefore, we decided to mechanically verify the results. Graduate student Michael Greenberg, 
who did not have prior experience with AURA, was nevertheless able to use the output of LNgen 
to prove the necessary results in Coq in about one month worth of effort. Greenberg reported that 
"All in all, LNgen was great—it covered most of the stupid facts I needed." The tool failed to 
generate only one set of lemmas, which concerned how substitution maintains invariants about 
the free variables of terms. 
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Generative Type Abstraction and Type-level Computation Modular languages support gen- 
erative type abstraction, ensuring that an abstract type is distinct from its representation, except 
inside the implementation where the two are synonymous. This well-established feature is in ten- 
sion with the non-parametric features of newer type systems, such as indexed type families and 
GADTs. In the paper "Generative Type Abstraction and Type-level Computation" [42] we solve 
the problem by using kinds to distinguish between parametric and non-parametric contexts. The 
result is directly applicable to the Haskell programming language, which is rapidly developing 
support for type-level computation, but the same issues should arise whenever generativity and 
non-parametric features are combined. 

We involved the Ott and the LNgen tool early in the development of this work, using these 
tools to specify the language under study, ensure that we had a complete specification, and verify 
consistency properties of that specification. As Figure 1 demonstrates, the language studied by 
this paper is the largest case study that we have performed. Because of the size of the language and 
the nature of the project we never mechanically proved any results about that specification—our 
reasoning was on paper only. Although the LNgen specification evolved as the design evolved, 
we ultimately abandoned the LNgen part of the specification. (The line counts are from the last 
version that worked with LNgen.) One reason for this decision was time pressure—we were 
working to a paper deadline, and this part was not on the critical path. Another reason was that 
we choose to include features in the language that went beyond the capabilities of LNgen. 

However, even as a pure specificational tool during the design process, making the system go 
through Ott and LNgen to produce a Coq specification was valuable. The fact that we could type 
check the Coq output means that certain bugs in the spec were eliminated much earlier than they 
would have been. Furthermore, the binding infrastructure produced by LNgen was beneficial to 
the small experiments that we did on the specification, even if we never produced a complete 
mechanical proof of our results. 

7    Conclusions 

Security-oriented languages are a key ingredient to the design of secure software systems. The 
provide specific functionality, such as mechanisms for authorization, auditing, confidentiality, and 
the tracking of information-flow throughout the system. Programs written in these languages 
that take advantage of these features, can be automatically shown to possesses key properties, 
essential to the security of the entire system. However, these results critically rely on the meta- 
theoretic properties of the languages themselves. This project has demonstrated both that it is 
feasible to mechanically check these properties, and that the overheads of the engineering process 
of producing mechanically verified languages are reasonable. 
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